
Hybrid Sampling/Optimization-based Planning for Agile Jumping Robots on
Challenging Terrains

Yanran Ding1, Mengchao Zhang1, Chuanzheng Li1, Hae-Won Park2, and Kris Hauser3

Abstract— This paper proposes a hybrid planning framework
that generates complex dynamic motion plans for jumping
legged robots to traverse challenging terrains. By employing
a motion primitive, the original problem is decoupled as path
planning followed by a trajectory optimization (TO) module
that handles dynamics. A variant of a kinodynamic Rapidly-
exploring Random Trees (RRT) planner finds a path as a
parabola sequence between stance phases. To make this fast,
a reachability informed control sampling scheme leverages
a precomputed velocity reachability map. The path is post-
processed to eliminate redundant jumps and passed to the TO
module to find a dynamically feasible trajectory. Simulation
results are presented where the proposed hybrid planner solves
challenging terrains by executing multiple consecutive jumps,
producing novel strategies to leap over large gaps by leveraging
dynamics. In a physical experiment, the hybrid planner is tested
on a real robot successfully traversing a challenging terrain.

I. INTRODUCTION

Legged systems have the unique capability of making
jumps to overcome challenging terrains with large height
differences and wide gaps. Agile animals such as squirrels
can plan complex dynamic maneuvers that fully utilize their
inherent dynamics to jump over extremely difficult obstacle
tracks. To rival nimble animals, many legged robots with
high jumping capability have been developed [1], [2], [3],
[4]. However, due to the differential constraints imposed
by the robot dynamics and the hybrid nature inherent to
locomotion, motion planning algorithms that can enable
these jumping robots to traverse complex terrains are not
as well developed.

Campana and Laumond proposed a ballistic motion plan-
ning algorithm [5] that can find a path with friction cone
and velocity constraints in a complex 3D environment using
Probabilistic Roadmaps (PRM) [6]. Inspired by [5], this
work aims to improve upon the assumption of impulsive
stance phase by explicitly addressing the stance dynamics,
so that more innovative trajectory can be discovered. To
achieve this goal, this work adopts the kinodynamic motion
planning [7] view point, which respects the dynamics of the
robot by imposing it as differential constraints. Sampling-
based methods such as PRM and Rapidly-exploring Ran-

1Yanran Ding, Mengchao Zhang and Chuanzheng Li are with
the Department of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, IL - 61801, USA. email:
{yding35,mz17,cli67}@illinois.edu. Yanran Ding and
Chuanzheng Li are supported by NSF 1752262 and NAVER LABS
under grant 087387; Mengchao Zhang is supported by NSF 1911087.

2Hae-Won Park is with the Department of Mechanical Engineering, Korea
Advanced Institute of Science and Technology, Daejeon- 34141, South
Korea. email: haewonpark@kaist.ac.kr.

3Kris Hauser is with the Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, IL - 61801, USA. email:
kkhauser@illinois.edu.

0.2 m

Fig. 1. Snapshots of the experiment where the robot executed the motion
produced by the proposed hybrid planner, which re-directed the momentum
of the robot in the second jump and surmounted the 0.9 m high platform.
The robot is mounted on a boom system.

dom Trees (RRT) [8] are widely used to solve large plan-
ning problems. However, the presence of certain differen-
tial constraints can severely compromise the efficiency of
these algorithms. Reachability-guided RRT (RG-RRT) [9]
increases the sampling efficiency by taking into consideration
of local reachability. Implementing RG-RRT in task space
and utilizing motion primitives enabled the LittleDog to
bound over rough terrain [10]. To increase the efficiency of
kinodynamic planners, Bézier curves [11] are used since they
parametrize a trajectory with fewer parameters. On the other
extreme, solving the whole trajectory with full dynamics
results in a large trajectory optimization (TO) problem. TO
has been widely used to generate dynamic motion plans
for humanoids [12], [13] and quadrupeds [14], [4] since
it handles the state and control constraints in a nonlinear
program (NLP) formulation. However, the computation time
increases drastically as the planning horizon increases.

To exploit the advantages of both sampling and
optimization-based methods, this paper proposes a hybrid
sampling/optimization-based planner for generating dynamic
motions for single-legged jumping robots to traverse chal-
lenging terrains. We decouple the original problem into
sampling-based planning followed by a module that solves
for the full dynamics using optimization. Similar to [5], aerial
phases are constructed as parabolas connected by stance
phases. Since the relationship between the touchdown and
liftoff state is complex, a velocity reachability map is pre-
computed and used in the kinodynamic RRT. After a feasible
path is found by the kinodynamic RRT and post-processed,
trajectory optimization is performed at each stance to find

the state and control trajectories.
The proposed hybrid planner is benchmarked against a

quasi-static planner and a mixed-integer convex program
(MICP) based planner. Compared with the quasi-static plan-
ner, our method is momentum aware in the sense that it can
find strategies where the robot makes consecutive jumps to
gain momentum to clear a wide gap. Compared with the
MICP-based planner, the solve time of the hybrid planner
scales much better as the number of step increases. To
validate the trajectory produced by the hybrid planner, a
physical experiment is conducted on robot hardware and
snapshots of the experiment are presented in Fig. 1.

II. METHOD

A. Dynamical Model

A point-mass model is employed since the physical robot
of interest [15] has most of its mass lumped at the base,
and the leg contributes to less than 10% of the total mass.
The base of the robot is fixed at the end of a boom system
and there is no torso pitch motion. Hence, the configuration
space of the robot is its center of mass (CoM) position p =
[x, z]T ∈ R2. The equation of motion (EoM) of the system
is

p̈ = F
m
+ ag, (1)

where m is the mass of the robot, ag = [0,−g]T is the
gravitational acceleration vector. The ground reaction force
(GRF) F ∈ R2 is parameterized by a Bézier spline with
coefficients αF = [αFx,αFz]T . Then the state trajectory
x(t) = [p(t), ṗ(t)]T is also parametrized by a Bézier spline
with coefficients αp,αṗ, which can be calculated by linear
operations

αṗ = L(αF , ṗ0),αp = L(αṗ,p0), (2)

where p0, ṗ0 are the initial CoM position and velocity, and
the definition of the linear operator L(⋅) can be found in
[16]. The duration of the stance is denoted Tst.

During the stance phase, the CoM of the robot is con-
strained to lie within the workspace Ω, which is shown in
Fig. 2 (b). The following inequalities delineate Ω,

Ω ∶= {p ∣ 0 ≤ pz (3a)
l ≤ ∣∣p − pc∣∣2 (3b)
rmin ≤ ∣∣p∣∣2 ≤ rmax (3c)
θmin ≤ arg(p) ≤ π − θmin}, (3d)

where l is the thigh/shank linkage length; pc is the point
where the knee joint would be if it contacted the ground;
rmin and rmax are the radial limits; θmin is the minimum
angular offset from the ground; arg(⋅) calculates the angle
between vector p and the positive x axis.

Dynamic constraints such as torque limit and GRF con-
straints are also enforced. The joint torque τ = [τhip, τknee]T
is mapped from GRF through τ = JTF , where J is the
Jacobian matrix; τmin and τmax are the torque limits. The
friction cone C(µ) is the set of GRF such that ∣Fx∣ ≤
µFz, Fz > 0, where µ is the friction coefficient.

𝑣𝑖𝑛

𝑣𝑜𝑢𝑡
𝑥
𝑣 𝑇𝐷

𝑥
𝑣 𝑇𝑂

𝑥

𝑧

𝑃𝑖𝑛 𝑃𝑜𝑢𝑡

𝑥
𝑧

ෝ𝒏𝑡𝑒𝑟

𝛀

𝑟𝑚𝑎𝑥

base

𝜃𝑚𝑖𝑛

GRF

(a) (b)

Fig. 2. (a) Illustration of the motion primitive. To connect two neighboring
parabolas, the boundary states of TO are constrained on their corresponding
parabola (gray curve). (b) The schematic of the single legged robot when
it is in stance phase. The workspace Ω is the gray shaded area.

B. Hybrid Planning

The hybrid planning approach decomposes the complex
kinodynamic motion planning problem into two stages. The
first stage utilizes a variant of the kinodynamic RRT to find
a sequence of parabolas that connects the start and the goal.
The second stage applies TO at each stance to solve for
the full dynamics. The motion primitive [17] that enables
the hybrid framework is shown in Fig. 2. The extensions
of the incoming parabola Pin and outgoing parabola Pout

intersect at the contact point and are parametrized by vin
and vout, respectively. Note that these are variables that
only pertain to the kinematic path, which is generated by
the sampling-based planning stage, coinciding with Campana
and Laumond’s planner. The touchdown states of the TO
xTD and the liftoff state xLO are chosen on Pin and Pout,
respectively. Therefore, the aerial phase determined by the
first stage is preserved in the second stage. The added benefit
is that since each stance is isolated, the multiple TOs could
be parallelized.

If TO fails in the second stage, the failed jump is removed
from the tree, and the sampling-based planning resumes
to generate more TO candidates. We observe that failures
are infrequent due to our use of a velocity reachability
map within the sampling-based planning to generate feasible
jumps with high likelihood.

C. Stance Trajectory Existence

A fundamental subproblem in our approach is a boundary
value problem to determine whether a feasible trajectory at a
stance can connect prescribed incoming and outgoing states.
It can be formulated as a trajectory optimization problem,
called TO1, as follows:

minimize
αF ,Tst

N

∑
k=1

∣∣τk ∣∣ ⋅ Tst (4a)

subject to pk ∈ Ω (4b)
τmin ≤ τk ≤ τmax (4c)
xTD ∈ Pin,xLO ∈ Pout (4d)
Fk ∈ C(µ). (4e)

Since the robot starts and ends at a static pose at the
first and last jump, the initial position of the first jump and
the final position of the last jump are only subject to the
workspace constraint.

To make the problem finite-dimensional, the state and
control trajectories are discretized at N sample points and
subscript (⋅)k indicates values at the kth instance of the
sampled time. The resulting optimization problem is a NLP.
N is set to be a constant 20 in practice.

D. Velocity Reachability Map

Given an incoming velocity vin at a stance, the velocity
reachability map R(vin) is defined as the set of vout such
that that TO1(vin,vout) in (4) has a solution. The reverse
reachability map R−1(vout) is defined similarly.

We precompute an approximation of the reachability map
that is used in the sampling-based planner to greatly speed
up planning by limiting connections so that they have a
high probability of yielding a dynamically feasible trajectory.
We approximate R(vin) by running TO1 over a 4D grid
of vin, vout and recording successes and failures. Even
though an NLP could be trapped in local minima, TO1

works sufficiently well for the small-scale problem here. For
each vin, the successful vout are approximated with a convex
hull, which may under-approximate the true reachability at
the margins but over-approximate it in convex regions. The
same dataset is used to derive an approximation of R−1 in
a similar fashion.

Fig. 3 presents an illustration of the velocity reachability
map. The bottom area is the set of vin with non-empty
R(vin). Each cell in the set of vin is color coded by the
area of R(vin). Note that the set of valid vin is asymmetric
because the serial linkage leg of the robot bends towards one
side. The R of two sample vin are plotted on the top of Fig.
3, where the cross symbol represents that TO1 can find a
solution for the vin,vout pair. The set R(vin) is defined as
the convex hull of the crossed points.

Fig. 3. An illustration of the reachability map R. The bottom area is the
set of vin with a non-empty vout set; the color at each vin indicates the
total area of the corresponding vout set. Two sample vout sets are shown
at the top.

E. Sampling-Based Planning

Sampling-based planning forms the outer loop of the
hybrid motion planner as shown in Algorithm 1. We use

a variant of the kinodynamic RRT algorithm, modified with
a reachability-informed control sampling scheme.

Algorithm 1 Hybrid Motion Planner
Input: R,x0,xg , T errain
Output: Traj ▷ Jumping trajectory
1: T .init(x0) ▷ Initialize the RRT tree
2: finished = False
3: while not finished do
4: xrand ← RandomSample(Terrain)
5: xparent ← FindParent(T ,xrand)

6: xnew ← STEER(R,xrand,xparent, T errain)
7: if xnew ≠ null then
8: T .add(xparent → xnew)

9: if ReachGoal(xnew) then
10: path = T .F indPath()
11: path∗ = path.Shortcut()
12: xfail, traj = TrajOpt(path∗)
13: if xfail = null then return traj;
14: else T .T rim(xfail)

A tree T is built from the initial state x0 by tak-
ing a random sample xrand ∈ R3 in the state-space
(RandomSample). The dimensionality of xrand is 3 be-
cause it involves the x-position and the incoming velocity.
The parent node xparent of the random sample xrand is
found (FindParent) based on a distance metric described
in Section II-F. A steer function (STEER) attempts to
extend from xparent to xrand, and a new node xnew will
be added to the tree if no collision was detected during the
STEER step. Otherwise, a sample will be drawn. Details
of the STEER function is presented in Algorithm 2 and
in Section II-F. The kinodynamic RRT is terminated once
the goal region has been reached (ReachGoal). Then a path
path will be extracted from the tree (T .F indPath).

The path is post-processed to eliminate redundant jumps
to get path∗ (path.Shortcut) as described in Section II-G.
Trajectory optimization TrajOpt is performed on the jumps
in path∗ as described in Section II-H. If it succeeds, we are
done, but if this fails, the failed state is returned. In this case,
the sub-tree rooted at the failure state will be deleted and the
random sampling resumes.

F. Reachability-Informed Control Sampling

A distance metric ρ(x1, x2) is used to find the nearest
neighbor of the sample. We use a weighted Euclidean
distance with weights [10,30,0.1,0.01] to account for the
importance of horizontal and vertical components of position
and velocity. The weight ratio of px and pz affects how
much the planner prefers to stay on the same height, and
the weight on vx is higher than vz because vx determines
the direction of the jump and is sensitive to friction limits.
The STEER function finds a collision-free parabola that
goes from xparent towards xrand while considering the
velocity reachability map. First, an outgoing velocity vguess
is obtained by kinematically connecting pparent and prand
without velocity constraint (Connect). Second, vguess is
projected (Project) to the reachable set R(vparent), which
is a convex polytope. Hence, the projection can be performed
by solving a quadratic program (QP) [18].

The STEER function tries at most Ntry times to ob-
tain a collision-free parabola. The random samples from
SampleWithBias follow a Gaussian distribution centered
at vproj with standard deviation of σ, where σ is the
distance between vproj and the farthest vertex of the polytope
R(vparent). Any sample outside of the reachable set is
rejected. The sampled velocity vsample is used to project
xparent to the landing state xnew (Projectile). xnew is
returned if the parabola does not induce collision. Otherwise,
null is returned to indicate collision.

Algorithm 2 STEER
Input: R,xrand,xparent, T errain
Output: xnew

1: vguess ← Connect(prand,pparent)

2: vproj ← Project(vguess,R(vparent))

3: for i = 1 to Ntry do
4: vsample ← SampleWithBias(vproj ,R(vparent))

5: collision,xnew ← Projectile(xparent,vsample, T errain)
6: if not collision then
7: return xnew

8: return null

G. Path Shortcut

Once the goal region has been reached, a kinematic path
is extracted from the tree T using the method T .F indPath.
Since it is possible that path involves redundant jumps, the
path.Shortcut method is applied to shortcut the path and
reduce the solve time for the subsequent TO. The Shortcut
method is summarized in Algorithm 3. The node xi attempts
to connect with a node xj(j > i) whose index starts from the
end of path. If xi and xj are successfully connected by the
function ConnectWithR, then the Projectile function is
called to check for collision. If the parabola is collision free,
then the new node xnew is added to the path∗ and viout,v

j
in

will be updated. Then the index i is given the value of j to
indicate a shortcut. In the outer loop, xi marches from the
start of path sequentially, until it reaches the length of the
path given by the method path.Length.

The function ConnectWithR solves an small nonlinear
program that accounts for the velocity reachability map,

minimize
vi
out,v

j
in,Tair

J (5a)

subject to viout ∈R(viin) (5b)

vjin ∈R−1(vjout) (5c)

xj
in =Φ(xi

out, Tair), (5d)

where the objective function J is set to a constant to form
a feasibility problem.

H. TrajOpt

The parabola sequence path∗ from the sampling-based
planner is solved in sequence using calls to TO1 to connect
each subsequent parabola with a stance phase. If TO1 cannot
solve a connection, a new TO that considers two consecutive
jumps (TO2) will be solved. This attempts to connect the
incoming velocity from the current stance phase to the

Algorithm 3 Path Shortcut
Input: path,R, T errain
Output: path∗

1: path∗.init(path[0])
2: N ← path.Length(), i← 0
3: while i < N do
4: for j = N to i + 1 do
5: xi ← path[i],xj ← path[j]
6: success = False
7: connected,vout ← ConnectWithR(xi,xj ,R)

8: if connected then
9: collision,xnew ← Projectile(xi,vout, T errain)

10: if not collision then
11: success = True
12: if success = True then
13: path∗.add(xnew)

14: i← j
15: break
16: else if j = i + 1 then
17: path∗.add(xj)

18: i + +
19: return path∗

outgoing velocity in the next stance phase, which involves
trajectory optimization over two stance phases and an aerial
phase.

minimize
αi

F
,T i

st,Tair,x1
LO

,x2
TD

2

∑
i=1

N

∑
k=1

∣∣τ i
k ∣∣ ⋅ T i

st (6a)

subject to pik ∈ Ω (6b)

τmin ≤ τ i
k ≤ τmax (6c)

x1
TD ∈ P 1

in,x
2
LO ∈ P 2

out (6d)

x2
TD =Φ(x1

LO, Tair) (6e)

F i
k ∈ C(µ), (6f)

where the superscript i ∈ {1,2} indicates the stance sequence.
The aerial phase with aerial time Tair that connects stance
1 and 2 has the kinematic relationship Φ,

Φ(x, T) = [p + vT + 1
2
agT

2

v + agT
] . (7)

TO2 can sometimes find trajectories that cannot be dis-
covered by TO1 since TO2 has more relaxed constraints.
If TO2 cannot find a solution, the current stance state is
treated as causing the failure and will be returned as xfail

to be pruned from the RRT tree.

III. RESULTS

A. Computation Setup

The hybrid planning framework is formulated in MAT-
LAB, and the TO1 (4) and TO2 (6) are formulated in
CasADi [19] using the multiple-shooting method. The re-
sulting nonlinear program (NLP) is solved by the solver
ipopt [20]. The computational geometry calculation is done
using the Mutli-Parametric Toolbox 3 (MPT3) [21]. The QPs
for projection as described in Section II-F are solved by
qpSWIFT [22]. The MICP-based planner in Section III-C
is implemented using YALMIP [23] and solved by gurobi
[24]. All of the simulation examples are run on a desktop
with Intel i7 at 3.40 GHz.

B. Performance on Various Terrains

The proposed hybrid motion planner is tested on 5 differ-
ent terrains, as shown in Fig. 4 and Fig. 5. The terrains are
assumed to be represented by piecewise constant functions.
The robot starts from the initial foot location (green circle)
and tries to find a jumping path to reach the goal region
(yellow box). Within each stance phase, the touchdown
velocity vTD is indicated by a blue arrow and the liftoff
velocity vLO a red arrow. The gray region shown in terrains
(a) and (b) are the workspaces. The initial and final robot
configurations at each stance are shown for terrains (a)-
(d). Note that in terrain (d) segment 4, the planner adopted
the strategy of taking intermediate jumps to re-orient the
momentum of the robot in order to jump over the wide
gap. Fig. 5 shows an example solution where the robot
takes 9 jumps to reach the goal region. At stance 2, the
TO1 failed to find a solution, which is indicated by the
black dot. Nevertheless, TO2 found a feasible trajectory by
simultaneously solving for stance 2 and 3 on segment 3. A
zoom-in view is presented to illustrate stance 2 and 3, where
the aerial trajectory is shown in a black dotted line. Fig. 6
(a) summarizes the solve time decomposition for the example
terrains. Solve time results from 20 trials are averaged and
the standard deviation is represented by the error bar. Terrain
(a) takes the shortest time (5 s) and the terrain in Fig. 5 takes
the longest time to solve (26 s). Fig. 6 (b) shows the average
node number of the RRT tree. Please note that the y-axis is
in log scale.

Although our method solves these problems in tens of
seconds, the performance of the current implementation can
be significantly improved. First, it is coded in MATLAB for
rapid prototyping, so its run time can be reduced once re-
written in a compile language. In addition, the run time can
be further decreased if the TO at each stance was parallelized
since each stance can be solved independently.

C. Benchmark

The proposed hybrid motion planning framework is com-
pared with a quasi-static planner and a mixed-integer convex
program (MICP) based planner. The three methods are tested
in the scenario presented in Fig. 7 (a). The platform height
h,2h and the gap width w are varied and the solve time
results are shown in Fig. 7 (b)(c).

1) Quasi-static Planning: This method is similar to the
proposed one except that it does not utilize the velocity
reachability map introduced in Section II-D in the sampling
stage. The quasi-static planning assumes that each step
starts with zero velocity and can achieve maximum velocity
vmax in every direction. The second assumption entails
the assumed reachable region to be a parabolic envelope
parametrized by vmax [25].

2) Mixed-Integer Convex Programs: The MICP-based
method here plans consecutive jumps while considering
actuator limits [26]. It is a resolution complete algorithm
whose worst-case solve time increases drastically as the
number of jumps increases. The number of jumps is set to
2 for the MICP-based planner to limit the solve time to be

(a)

(b)

𝑣𝑇𝐷
𝑣𝐿𝑂

Goal region

Stance 𝑝

Aerial 𝑝

Start

1 𝑚

Workspace

(c) (d)

1

2

3

4

4

1

2

3

Fig. 4. Example terrains that are solved using the proposed hybrid motion
planner. A scale is presented to show dimension. (a) a flat ground (b) three
stairs: Left-Right-Right (c) a wide gap, where the region with saw teeth is
forbidden (d) three stairs: Left-Right-Left.

1 𝑚

𝑣𝑇𝐷
𝑣𝐿𝑂

Goal region

Stance 𝑝

Aerial 𝑝 for 𝑇𝑂1

Start

Aerial 𝑝 for 𝑇𝑂2

𝑇𝑂1 failed step

1

2

3

4

5

Fig. 5. The hybrid sampling/optimization-based planning algorithm can
solve complex terrains as the one presented in this figure. The zoom-in
part shows the case where TO1 failed at stance 2, and TO2 succeeded by
solving for stance 2 and 3 simultaneously.

within the same order of magnitude as the other two methods.
To achieve convex formulation, the torque limit constraint is
relaxed and the solution is more conservative.

Fig. 7 (b) presents the solve time of the three methods
where w is fixed at 0.4 m and h is varied from 0.2 m to
0.7 m. As can be observed from the figure, the MICP-based
planner is slower than the other two methods and failed
when h is higher than 0.45 m. In contrast, the quasi-static
planner performs almost as well as the hybrid planner in the
first scenario. Fig. 7 (c) shows the solve time comparison
where h is fixed at 0.5 m and w is varied from 0.3 m to
0.6 m. The quasi-static planner failed at w =0.43 m due to its

(a)

(b)

Fig. 6. Simulation results from 20 trials on the example terrains. The
error bar represents one standard deviation. (a) The average solve time
decomposed into three parts, RRT, shortcut, and TO. (b) The average node
number of the tree.

(a)

(b) (c)

Fig. 7. Benchmark result of the hybrid planner, quasi-static planner and
MICP-based planner. The former two are repeated for 10 times and the
average is shown as solid line and shaded area represents one standard
deviation. (a) The scenario for the benchmarking of the three methods (b)
The testing case where w is fixed at 0.4 m and h is varied (c) The testing
case where h is fixed at 0.5 m and w is varied. H-MP stands for the hybrid
motion planner, and Q-static for quasi-static planner.

static assumption. MICP-based planner can solve a slightly
wider gap at the cost of longer solve time. In comparison,
the proposed hybrid planner finds solutions in all the tested
scenarios using the shortest solve time.

These tests highlight the advantages of the proposed
hybrid planning framework. Compared with the quasi-static
planner, the proposed framework utilizes the velocity reach-
ability map to reason about the momentum of the robot.
Hence, the proposed method can come up with the strategy
of taking intermediate jumps to re-direct its momentum
to overcome wide gaps. MICP-based planner can plan for
consecutive jumps but its solve time does not scale well
as the number of jump increases due to the curse of
dimensionality. Besides, the MICP-based planner produces
conservative results due to the convex relaxation.

D. Experiment Setup

The 2 DoF robot leg [15] is fixed to the end of a boom
system with a radius of 1.25 m. The position of the robot
is measured by two encoders installed at the base of the
boom. The moving mass is 1.1 kg and the link length of
the robot is 0.14 m. The feedforward force profile from the

hybrid planning algorithm is applied at the stance phases,
and a PD controller is applied during the aerial phase to
track foot swing trajectory. Proprioceptive contact detection
was implemented to initiate stance phases.

E. Experiment Result
The terrain is set up such that the robot has to make use of

the 0.4 m high platform on the left to reach the goal region
on the 0.9 m high platform on the right. The snapshots of the
experiment are presented in Fig. 1. The hybrid planner can
come up with the strategy of making intermediate jumps on
the left platform to re-direct its momentum to clear the wide
gap and reach the goal region.

Fig. 8. The joint torque recording for the three consecutive jumps
experiment. The shaded areas indicate stance phases.

The hip and knee joint torque trajectories for the three
jumps experiment are shown in Fig. 8, where the stance
phases are indicated by the gray areas. It can be observed
that both hip and knee torques are within the torque limit
(10 Nm). The oscillation after the stance phase is due to
the rapid swing foot retraction to avoid collision with the
environment.

IV. CONCLUSION

This paper presents a hybrid sampling/optimization motion
planning algorithm for an agile single-legged robot to jump
over challenging terrains. Under appropriate assumptions,
the original kinodynamic motion planning problem could
be decoupled into sampling and optimization stages. In the
sampling stage, a variant of the kinodynamic RRT algorithm
is employed to search for a kinematically feasible path
as a sequence of parabolas. The pre-computed velocity
reachability map is utilized to restrain the samples to be
within a subset of the state space, which accelerates the
algorithm by increasing the success rate of the subsequent
TO. After a path shortcutting procedure, the optimization
stage solves a TO problem at each jump for the dynamically
feasible trajectory. The performance of the proposed hybrid
motion planning algorithm is shown on various example
terrains, and the advantage of this method is highlighted
through benchmarking with two other methods. A trajectory
generated by the proposed method is applied on a physical
robot, which successfully traversed a challenging terrain by
executing 3 consecutive jumps. The proposed hybrid planner
is applicable to other single-legged robots such as SALTO
to traverse more complex terrains.

REFERENCES

[1] J. K. Yim and R. S. Fearing, “Precision jumping limits from flight-
phase control in salto-1p,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 2229–
2236.

[2] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic
vertical jumping agility via series-elastic power modulation,” Science
Robotics, vol. 1, no. 1, 2016.

[3] J. Hwangbo, V. Tsounis, H. Kolvenbach, and M. Hutter, “Cable-driven
actuation for highly dynamic robotic systems,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 8543–8550.

[4] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
6295–6301.

[5] M. Campana and J.-P. Laumond, “Ballistic motion planning,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1410–1416.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[8] S. M. LaValle, “Rapidly-exploring random trees: A new
tool for path planning,” Report No. TR 98-11, Computer Science
Department, Iowa State University., 1998. [Online]. Available:
http://janowiec.cs.iastate.edu/papers/rrt.ps

[9] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 2859–2865.

[10] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, “Bound-
ing on rough terrain with the littledog robot,” The International
Journal of Robotics Research, vol. 30, no. 2, pp. 192–215, 2011.

[11] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 2427–
2433.

[12] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, no. 3, pp. 429–455,
2016.

[13] S. Dafarra, S. Bertrand, R. J. Griffin, G. Metta, D. Pucci, and J. Pratt,
“Non-linear trajectory optimization for large step-ups: Application to
the humanoid robot atlas,” arXiv preprint arXiv:2004.12083, 2020.

[14] H.-W. Park, P. M. Wensing, S. Kim et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
Robotics: Science and Systems, 2015.

[15] Y. Ding and H.-W. Park, “Design and experimental implementation
of a quasi-direct-drive leg for optimized jumping,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 300–305.

[16] Y. Ding, C. Li, and H.-W. Park, “Kinodynamic motion planning for
multi-legged robot jumping via mixed-integer convex program,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020.

[17] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using mo-
tion primitives in probabilistic sample-based planning for humanoid
robots,” in Algorithmic foundation of robotics VII. Springer, 2008,
pp. 507–522.

[18] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[19] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[20] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using ipopt: An integrating framework for enterprise-wide dynamic
optimization,” Computers & Chemical Engineering, vol. 33, no. 3,
pp. 575–582, 2009.

[21] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-
parametric toolbox 3.0,” in 2013 European Control Conference (ECC).
IEEE, 2013, pp. 502–510.

[22] A. G. Pandala, Y. Ding, and H. Park, “qpswift: A real-time sparse
quadratic program solver for robotic applications,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3355–3362, 2019.

[23] J. Lofberg, “YALMIP: A toolbox for modeling and optimization
in matlab,” in 2004 IEEE international conference on robotics and
automation (IEEE Cat. No. 04CH37508). IEEE, 2004, pp. 284–289.

[24] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

[25] D. Donnelly, “The parabolic envelope of constant initial speed trajec-
tories,” AmJPh, vol. 60, no. 12, pp. 1149–1150, 1992.

[26] Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning
with mixed-integer convex optimization,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 1–6.

