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Abstract— This paper presents a novel computational model
to address the problem that contact is an infinite phenomena
involving continuous regions of interaction. The problem is cast
as a semi-infinite program with complementarity constraints
(SIPCC). Rather than pre-discretize contacting surfaces into a
finite number of contact points, we use semi-infinite program-
ming (SIP) techniques that operate on the underlying contin-
uous geometry, but dynamically determine a finite number of
constraints that are most relevant to solving the problem. Then
we solve the series of problems whose solutions converge toward
one that contains a true optimum of the original SIPCC. We
apply the model to a grasping pose optimization problem for
a gripper and a humanoid robot, and our model enables the
robots to find a feasible pose to hold (non-)convex objects while
ensuring force and torque balance.

I. INTRODUCTION

Contact is pervasive in nature. Humans and other or-
ganisms treat contact as a fact of life and utilize contact
with their environment to enable dexterous manipulation of
objects or agile locomotion. In contrast, the majority of
current robots avoid touching things as much as possible, and
when they do, they tend to avoid complex manipulations like
pushing, sliding, and hugging objects and have difficulties
sitting, crawling, and leaning on supports [7], [8]. Optimiza-
tion is a central tool in robot planning, but a major limitation
with existing tools is the representation of geometric contact
in optimization, which is not easily captured as a numeric-
valued constraint except for simple geometries like polyhedra
and geometric primitives [21], [22]. In this paper, we propose
a novel method for handling complex, irregular geometries
to optimize poses of objects in contact while respecting force
and torque balance conditions.

Our method is based on the semi-infinite programming
(SIP) paradigm, which represents a collision constraint as an
infinite set of simpler constraints and dynamically instanti-
ates a finite subset of these constraints during optimization.
We present a novel formulation semi-infinite programming
with complementarity constraints (SIPCC) that optimizes
a force distribution over points of contact, and encodes
constraints and/or objectives on the force distribution, e.g.,
force balance and Coulomb friction. The complementarity
condition, which states that the force at the point may only
be nonzero if contact is made at that point, makes this
tractable, since the solver only needs to reason about the
force distribution at points of active contact.
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Close initial condition

Final pose with contact forces

(a) Gripper, Wine glass (b) Gripper, Bowl (c) Humanoid, Sphere

Fig. 1: Our algorithm optimizes for stability considering multiple contacts
anywhere on the robot. The first row shows the initial configurations for
three examples, and the bottom row shows final poses and contact forces.
Normal forces are drawn in orange, and friction forces are drawn in red,
translated to the end of the normal forces. [Best viewed in color.]

We present a local optimization algorithm for SIPCC that
uses the exchange method [12], which iteratively chooses a
finite subset of contact points and forces to consider, and
then formulates a finite-dimensional nonlinear constrained
optimization problem to solve for a step direction. Using a
judicious constraint selection procedure, called an oracle, the
series of problems converges toward one that contains a true
optimum of the original problem. We discuss the impact of
several implementation design choices, such as the oracle,
merit function, inner-loop optimization step size, and outer-
loop line-search step-shrinking coefficient.

The model is implemented on a gripper and a humanoid
robot to optimize their static pose to hold an object and
ensure that the object is in both force and torque balance.
The algorithm converges quickly to local optima even with
highly complex geometries, and poses can be found in tens
of seconds.

II. RELATED WORK

In this section, we review related works in the robotics
field using SIP and works on pose optimization with contacts.

A. Semi-infinite programming

Historically, SIP appeared as a smooth reformulation of
the non-smooth Chebyshev approximation problem [27].
Further applications of SIP arose in different fields such as
engineering design, optimal control, disjunctive optimization
and etc.



In the field of robotics, SIP has been applied to robot
trajectory optimization problems under state and control
constraints, in which the 1D time variable of the spline
is the index parameter [26]. It has also been applied to
robust optimization problems in which the disturbance is the
index parameter [29]. In our prior work [11], we used SIP
with an efficient deepest-penetration oracle to handle colli-
sion constraints with complex, non-convex 3D geometries.
In this paper, we extend our previous work to explicitly
reason about contact forces by encoding frictional contact
force constraints, constraints on stability under gravity, and
objective functions involving robot joint torques.

A related formulation is the semi-infinite mathematical
programming problem with equilibrium constraints (SIM-
PEC) which is studied in [19]. In SIMPEC the equilibrium
constraints are established only on the primary variables,
whereas in SIPCC equilibrium constraints are semi-infinite.
Moreover, Ref. [19] only studies the optimality conditions
and duality of the problem; it does not propose an algorithm
to solve SIMPEC.

B. Grasping Pose Optimization

Grasping pose optimization finds a high-quality pose of a
robot to grasp an object, where the quality of a pose should
consider robot-self collision, robot-object collision, and static
equilibrium of the object at the grasping pose.

Model-based grasp planners search explicitly for such a
pose using knowledge of the object and robot’s geometry.
Both sampling-based [17] and continuous optimization meth-
ods [6] have been used. Sampling-based grasp planners can
use almost any grasp quality metric as the objective function
and incorporate collision detection naturally. However, they
tend to converge slowly toward an optimum, particularly
when the dimensionality of the robot’s pose grows high.
Continuous optimization, on the other hand, converges more
quickly to optima, but requires differentiable geometry rep-
resentations to encode collision constraints and grasp points
as a function of the robot pose. Recent work has formulated
a grasp planner that optimizes grasp points and gripper
poses in a two-stage fashion [13]. The outer stage searches
globally over grasp points to optimize some metric, while
the gripper pose is computed by inverse kinematics and
collision constraints. However, this approach requires convex
geometries where each link can only make contact at a single
point with the object. Our method is a local optimization
method that handles complex non-convex geometries and
can allow multi-point contact on a single link. However, our
method does not search for a force closed grasp.

Learning-based grasp planners can predict grasp points
and/or gripper poses given noisy observations of the en-
vironment. However, they always perform extensive data
generation. For example, in [15], Lu et al performed 1507
grasp trials in simulation, and only 159 were successful,
because the data are collected by initializing the gripper
at some pre-grasping pose and then closing the fingers by
some fixed manner. Our method, which takes the geometry
information of different objects into account, and could also

be easily combined with any differentiable grasp metric,
could be a good replacement for the simulator to generate
data for the training of learning-based planners.

III. SEMI-INFINITE PROGRAMMING WITH
COMPLEMENTARITY CONSTRAINTS

A. Adding complementarity into semi-infinite programs

A semi-infinite programming problem is an optimization
problem in finitely many variables x ∈ Rn on a feasible set
described by infinitely many constraints:

min
x∈Rn

f(x)
s.t. g(x, y) ≥ 0 ∀y ∈ Y, (1)

where g(x, y) ∈ Rm is the constraint function, y denotes
the index parameter, and Y ∈ Rp is its domain. In the case
of pose optimization with collision constraints, x describes
the pose of objects in the scene, y is a contact point on the
surface of one object, Y denotes that surface, and g is the
distance from the point to the other object. Typically, optimal
solutions will be supported by contact at some points, i.e.,
g(x⋆, y) = 0 will be met for the optimal solution x⋆ at some
set of points y.

An additional challenge is posed when forces need to be
considered as part of the solution to ensure force and torque
balance, since force variables need to be introduced to the
optimization problem at each point of contact. We do this by
defining a continuous field z ∶ Y → Rr in which is an opti-
mization variable. To ensure that forces are only felt at points
where objects are in contact, the field is required to satisfy
a complementarity condition z(y)g(x, y) = 0 ∀y ∈ Y ,
which ensures that the force is nonzero only if the distance
between the geometries is zero. Meanwhile, there may be
some other inequality constraints h(x, y, z(y)) ≤ 0 that need
to be satisfied pointwise, such as friction constraints. Finally,
we may require some constraints on the integral of the field
over the domain, such as force and torque balance. In this
way, we define an SIPCC as a problem in the form:

min
x∈Rn,z∈Y→Rr

f(x, z) = fx(x) + ∫
y∈Y

fz(x, y, z(y))dy

s.t. g(x, y) ≥ 0 ∀y ∈ Y
z(y)g(x, y) = 0 ∀y ∈ Y (2)

z(y) ≥ 0 ∀y ∈ Y
h(x, y, z(y)) ≥ 0 ∀y ∈ Y

s(x, z) = sx(x) + ∫
y∈Y

sz(x, y, z(y))dy = 0,

The objective f(x, z) and integral constraint s(x, z) are
actually functionals, because they accept a function z as
input.

SIPCC problems not only have infinitely many constraints
like SIP problems, but also introduce a continuous infinity of
variables in z. To solve the SIPCC problems using numerical
methods, we hope that z only is non-zero at a finite number
of points. Indeed, if an optimal solution x⋆ is supported by a
finite subset of index points Ỹ = (y1, y2, . . . , yN) ∈ Y , then
it suffices to solve for the values of z at these supporting



points, since z should elsewhere be zero. We borrow this
concept, which is used in the exchange method used to solve
SIP problems [14], to solve the SIPCC problem.

B. Exchange method and oracle

A discretization of an SIPCC problem creates constraints
and variables corresponding to a finite number N of in-
stantiated index points Ỹ = (y1, . . . , yN). Force variables
z = (z1, . . . , zN) are instantiated for each index point
(slightly abusing notation). To replace integrals with sums,
the true distribution z(y) is represented by a set of Dirac
impulses: z(y) = ∑i δ(y − yi)zi. In this way, the SIPCC
problem is converted into a standard mathematical program
with complementarity constraints (MPCC) over (n + Nr)
variables:

min
x∈Rn,z∈RNr

fx(x) +
N

∑
i=1
fz(x, yi, zi)

s.t. g(x, yi) ≥ 0 ∀i = 1, ...,N (3)
zig(x, yi) = 0 ∀i = 1, ...,N

zi ≥ 0 ∀i = 1, ...,N

h(x, yi, zi) ≥ 0 ∀i = 1, ...,N

sx(x) +
N

∑
i=1
sz(x, yi, zi) = 0,

where r is the number of force variables for each index point.
In a slight abuse of notation, when discussing discretized
SIPCC problems we will write the discretized objective as
(x, Ỹ , z), and stacked vectors of inequality constraints as
g(x, Ỹ ) and h(x, Ỹ , z), and the force and torque balance
constraint as s(x, Ỹ , z).

For a solution of the MPCC to correspond to a feasible
impulse solution of the original SIPCC, we note that the
constraint function h must be conic in z, i.e., h(x, y, z(y)) ≥
0 Ô⇒ h(x, y, c ⋅ z(y)) ≥ 0 for any scaling c > 0.

To apply the exchange method to SIPCC, we progressively
instantiate index sets Ỹ1, Ỹ2, . . . and their finite-dimensional
MPCCs whose solutions converge toward the true opti-
mum [20]. Specifically, define P as the original SIPCC, Qk
as the MPCC instantiation corresponding to Ỹk, and let x∗k
be the solution to Qk. If the index sets are chosen wisely, we
expect that the iterates x⋆1, x

⋆
2, . . . will eventually approach

an optimum of P . A naive approach would sample points
incrementally from the domain Y (e.g., randomly or on a
grid), and hopefully, with a sufficiently dense set of points,
the MPCC solutions will approach an optimal solution. But
this approach is inefficient as most samples will not affect
the iterated solutions, and also whether the iterated solutions
approach an optimal solution of the SIPCC using this strategy
is an open question.

The key question here is which new constraint should
be selected, and oracle is a subroutine that performs this
selection process. In Ref. [11], a maximum-violation oracle
that selected closest / deepest penetrating points was used
to avoid collisions between the robot and its environment.
We argue that adding such points is necessary to solve our
problem, but maximum-violation alone may not be sufficient

because closest points may not encourage the instantiated
MPCC toward finding a solution to the force balance con-
straints. We show that an oracle that balances the residual
of the collision constraint against that of the force balance
constraint, as described in Section IV, yields improved solve
rates at the expense of additional computation time.

Also, it is possible to delete constraints from the constraint
set when they are not deemed necessary (the “exchange”),
which saves time in later MPCC solve steps. In our imple-
mentation, we delete the index points whose distances to the
robot are bigger than a threshold and the forces assigned on
that index points are smaller than some other threshold.

C. Optimization of instantiated MPCCs

MPCCs are generally difficult to solve since they are
highly degenerate problems and they do not satisfy the
majority of Constraint Qualifications established for standard
nonlinear optimization [16]. But recently, they have attracted
significant attention of operation researchers. The standard
form of an MPCC problem is given in Problem 4, where
0 ≤ g(x, y) ⊥ z ≥ 0 means the two vectors are positive
and orthogonal, cI is the inequality constraint and cE is the
equality constraint.

min
x∈Rn,z∈Rp

f(x, z)

s.t. cI(x, z, g(x, y)) ≤ 0 (4)
cE(x, z, g(x, y)) = 0

0 ≤ g(x, y) ⊥ z ≥ 0.

We convert Problem 3 into an MPCC in the form of
Problem 4 to get the search direction p = (dx, dz).

Anitescu shows that SQP with elastic mode converges
globally for MPCCs [3]. Moreover, Fletcher et al. [9]
presented a large collection of MPCC test problems and
compared the performance of standard NLP solvers (SNOPT
[10], Knitro [5] and loqo [25]) on those problems. SQP
methods are proved to be the most robust at solving MPCCs,
and SNOPT had the best performance among all the tested
solvers. We use SNOPT in our implementation, and also take
the most common smoothing approach for the complimen-
tarity gap, which replaces g(x, y) ⋅ z = 0 by g(x, y) ⋅ z ≤ τ
and gradually driving τ to 0.

D. SIPCC Outer Iteration

Once we get a step toward a desired point xd, zd, the
SIPCC outer loop moves from the current iterate (xk, zk)
toward xd, zd. However, due to nonlinearity, the full step may
lead to worse constraint violation. To avoid this problem, we
perform a line search over the following merit function that
balances reducing the objective and reducing the constraint
error:

φ(x, Ỹ , z;µ) = f(x, z) + µ∥v(x, Ỹ , z)∥1, (5)

where v denotes the vector of constraint violations of
Problem 3, which includes the negative components of
each g−(x, yi) and h−(x, yi, zi) term, each complementarity



term zig(x, yi), and the force/torque balance term sx(x) +
∑Ni=1 sz(x, yi, zi). We denote the negative component of a
term as ⋅− ≡min(⋅,0). Also, in SIP for collision geometries,
a serious problem is that using existing instantiated index
parameters, a step may go too far into areas where the
minimum of the inequality g∗(x) ≡ miny∈Y g(x, y) violates
the inequality, and the optimization loses reliability. So we
add the max-violation g−∗k (x) to v. Moreover, since the
scaling of the complementarity constraint is in different units
from either g, h, or s, we allow a user-defined weight on each
entry of v. Note that, with a fixed index set, our problem
becomes a standard MPCC, which is solved using SQP.
Therefore, the search direction of the inner problem must
be a descendent direction of the above l1-merit function, as
analyzed in Ref. [4].

Ref. [18], Eq. (18.33) gives a reasonable method for
choosing µ to ensure that the chosen descent direction pk
computed by SNOPT descends the merit function. It is
sufficient to choose any µk satisfying

µk >
∇xzf(xk, Ỹk, zk)T pk

∥v(xk, Ỹk, zk)∥
, (6)

and hence we simply double the right hand side.
One notable challenge is the complementarity constraint.

Because (xd, zd) satisfies the constraint and (xk, zk) often
is quite close to satisfying it, the midpoint between these
points is likely to have a large constraint error. Hence, we
perform a line search that backtracks only by a small amount
on each iteration (we use a 20% reduction).

For an accepted point of the line search that decreases
the merit function, we also enforce the requirement that
the penetration depth between two geometries is not too
deep, because the quality of penetration depth and normal
estimation degrades with depth. When the penetration depth
exceeds a threshold, that is g⋆(x) ≤ gmin, we add the
detected penetration point as an index point to Ỹk+2 in the
next iteration.
E. Performance tuning

Coherence between problems Qk−1 and Qk may suggest
the use of warm-starting to speed up solve. We also keep the
forces assigned for each kept index point from Qk−1 and use
it as the initial value for Qk. By default, we set the guessed
forces for new index points to 0 as listed in Alg. 1 Line 7.

The SNOPT iteration count should be set lower than the
default value to avoid spending too much time on problems
whose constraint sets are not sufficiently populated. Also,
the step size of SNOPT should be set lower than the default
value to avoid a deep penetration step.

IV. STABLE GRASPING FORMULATION

We apply SIPCC to solve for a gripper/humanoid robot
to hold an object, while making sure that the object is in
both force and torque balance. We assume that A) the object
geometry is known; B) the mass and center of mass (CoM) of
the object are known; C) the friction coefficient between the
robot and object is known; D) the base joint of the gripper
can provide arbitrary large force and torque.

Algorithm 1 SIPCC Solver
Input: Nmax

outer , Nmax
inner , step size tolerance εx, complementarity

gap tolearance εgap, balance tolerance εs, penetration tolerance
εp, index deletion thresholds zmin and gmax, initial guess
xinit ∈ Rn

1: x0 ← xinit

2: Ỹ0 = [ ] ▷ Initialize empty constraint set
3: z0 ← ∅ ▷ Initialize empty force vector
4: for k = 0, . . . ,Nmax

outer − 1 do
5: ▷ Update constraint set and guessed forces z̃k
6: For any yi ∈ Ỹk with corresponding zi where zi ≥ zmin

and g(xk, yi) ≤ gmax, add yi to Ỹk+1 and zi to z̃k
7: Run the oracle to add one or more new points to Ỹk+1.

Initialize their force(s) zi to 0
8: ▷ Solve for step direction
9: τ0 ← z̃Tk g(xk, Ỹk+1)

10: Run SNOPT to yield the desired endpoint xd, zd
11: ▷ Line Search
12: α← 1
13: ∆x← xd − xk, ∆z ← zd − z̃k
14: Calculate µk from (6)
15: score0 = ψ(xk, Ỹk+1, z̃k;µk)
16: converged← false
17: while ¬converged and ninner < Nmax

inner do
18: x← xk + α∆x, z ← z̃k + α∆z
19: score = ψ(x, Ỹk+1, z;µk)
20: if score ≤ score0 then
21: converged← true
22: if miny∈Y g(x, y) ≤ gmin then
23: Add y∗ = arg miny∈Y g(x, y) to Ỹk+2

24: else
25: α← α ⋅ 0.8
26: ninner ← ninner + 1
27: ▷ Update state and test for convergence
28: xk+1 ← xk + α∆x
29: zk+1 ← z̃k + α∆z
30: if α∥∆x∥ ≤ εx and zTk+1g(xk+1, Ỹk+1) ≤ εgap and
∑ g−∗k+1(x) < εp and ∥s0∥ < εs then return xk+1,zk+1

A. Geometry modeling

To handle collision avoidance, we establish a semi-infinite
constraint g(x, y) between the robot and the object. We
perform some pre-computation to accelerate SIPCC solve.
The object is represented as a point cloud with resolution 1
mm, and the robot links are represented as a signed distance
field (SDF) with resolution 0.8 mm, which supports O(1)
depth lookup and O(1) gradient estimation at a point.

B. Friction force modeling

We model the contacts between the robot and each index
point on the object as point contacts with dry friction. The
i’th force variable zi = (fNi , fFi,1, . . . , fFi.j) represents the
force applied at the i’th contact yi, which is divided into
the normal component fNi and j frictional components fFi,j
along the edges of a polyhedral approximation of the friction
cone [24]. Given the normal vector ni along the outward
surface normal, and d tangential directions ti,j , the overall
force applied at at yi is fi = fNi ni +∑j fFi,jti,j . Each of the
components of zi is required to be non-negative (zi ≥ 0), and
given the friction coefficient µi, the friction cone constraints
are given by ∑j fFi,j ≤ µifNi .
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Fig. 2: Comparison of different oracles at the given pose. Squares, circles
and triangles indicate the index points instantiated by MVO, LSO and GSO,
respectively. [Best viewed in color.]

C. Force and torque balance

We establish an integral equality constraint on the object
force and torque balance. Force balance requires that the
force exerted by the object on the robot matches the gravity
force of the object, ∑i fi =mg. Torque balance requires that
the torque applied to the object to be zero, ∑i ri ×(−fi) = 0,
where ri = yi−CoM is the vector from the CoM of the object
to the index point yi.

We adopt a heuristic to reduce the number of constraints
in the complementarity condition and accelerate solve times.
By only applying complementarity to the normal component,
g(x, yi) ⋅ fNi = 0, we reduce the number of complementarity
constraints from Nr to N , and the problem is unchanged
because fNi = 0⇒ zi = 0 due to the friction cone constraint.

D. Custom oracle

As discussed in Section III.B, an oracle should be designed
to instantiate a sequence of contact points y that help the
SIPCC find a feasible solution. The Maximum violation
oracle (MVO) chooses the closest point y for each link
argminy∈Y g(x, y), but fails to consider the balance and
complementarity constraints.

In Algorithm 1, any (deepest) penetrating point is auto-
matically added to the constraint set, so we turn our atten-
tion to non-penetrating index points. The complementarity
constraint alone is not sufficient to select y, since for any
y for which g(x, y) > 0, we can let zi = 0 to satisfy
complementarity. Instead, we must consider the interaction of
force-torque balance with the other constraints. The balance
residual at a new point y, if we were to find a force z, is
s0(x)+sz(x, y, z), where s0(x) = sx(x)+∑Ni=1 sz(x, yi, zi)
is the residual at the current index points. Then, an ideal new
index point y, would enable solving for a new pose x′ and
force z to simultaneously satisfy g(x′, y) ≥ 0, h(x′, y, z) ≥ 0,
and s0(x′) + sz(x′, y, z) = 0.

Solving these constraints directly would require finding a
constraint-minimizing (x′, z) for every y ∈ Y , which would
be expensive to solve. So we propose an approximate score
that is expected to take large values for high quality y.
We define −s0(x) ⋅ sz(x, y,1) as a score for the balance
constraint, and exp(−g(x, y)) as a score for the contact
constraint, since a point with a small g(x, y) has a good
chance to satisfy the complementarity constraint if a force
would be assigned at that point.

Far initial condition

Final pose with contact forces

(a) Gripper, Wine glass (b) Gripper, Bowl (c) Humanoid, Sphere

Fig. 3: The same test cases as in Figure 1 but with farther initial conditions.
SIPCC is still able to find a pose to hold the object, and sometimes
determines unusual strategies. [Best viewed in color.]

We define an overall score w1 ⋅ (s0 ⋅ sz(x, y,1)) + w2 ⋅
exp(−g(x, y)) that should be maximized at a high-quality
point, where w1 and w2 are custom weights. This is too
expensive to minimize over the entire domain Y , so we
propose an alternate approach, called the Local score oracle
(LSO), that only minimizes over a neighborhood of the
MVO point. Overall, we choose y∗ = argmaxy∈Br(y∗M )[w1 ⋅
(s0 ⋅ sz(x, y,1))+w2 ⋅ exp(−g(x, y))], where Br(y∗M) is an
neighborhood of the MVO point y∗M with radius r. Here, r
is a user-defined parameter. When r = 0, LSO is equivalent
to MVO, and when r =∞, the optimization occurs over the
entire object, which we call the Global Score Oracle (GSO).
We perform this computation for each robot link.

The index points instantiated by the three oracles at the
same configuration are shown in Figure 2. For LSO, r is
chosen to include 2,000 points around the MVO point.
From the results we can see that the GSO finds points that
would immediately cause balance constraints to be met, but
does not respect the initial pose. LSO strikes a balance
between proximity and points that have better normals to
apply upward forces.

V. EXPERIMENTS

The SIPCC algorithm is implemented with front end in
the Python programming language, with the SNOPT solver
[10], and custom C++ collision detection software. The
communication between Python and SNOPT is through the
pyOptSparse [28]. The Klamp’t library is used for robot kine-
matics, collision queries, and visualization [1]. The objects
are taken from Princeton Shape Benchmark [23] and Ycb
benchmark object and model set [2]. All experiments were
run on a single core of a 3.6 GHz AMD Ryzen 7 processor.

To show the generality of our algorithm, we first solve
for a Robotiq Adaptive 3-finger gripper holding a wine glass
and a bowl, and a HUBO2 humanoid robot (which can be
viewed as a giant gripper) holding a large sphere. In this and
subsequent experiments, we set the minimum signed distance



Test Case # in PC DoF Initial Iter Time (s) Comp Gap (N ⋅ m) Bal Res Pen (m) # Contact Ave Index Ave Active Index

Gripper, Wine Glass 436,804 18 Close 22 33.6 1.1e-3 9.8e-14 9.3e-4 10 86.5 15.9
Far 14 53.1 1.1e-4 2.4e-13 6.1e-4 6 74.6 5.9

Gripper, Bowl 674,594 18 Close 12 17.8 2.6e-15 2.6e-15 4.6e-4 10 63.5 12.1
Far 8 9.9 9.1e-14 9.1e-14 5.6e-4 7 57.6 4.9

Humanoid, Sphere 28,362 63 Close 23 199.3 1.6e-5 4.9e-15 8.6e-4 8 215.4 5.3
Far 24 246.3 6.8e-3 2.3e-13 7.2e-4 8 204.3 3.7

TABLE I: Test results, listing # points in the point cloud (# in PC), robot degrees of freedom (DoF), outer iterations (Iter), computation time (Time),
complementarity gap at final pose (Comp Gap), balance residual at final pose (Bal Res), sum of penetration depth of all the robot links (Pen), # contact
points at final pose (# Contact), average # of index points instantiated in each iteration (Ave Index) and average # of index points kept after “exchange”
(Ave Active Index).

Oracle Time (s) Pen (m) Comp Gap
(N ⋅ m)

Bal Res Success (%)

Mean 27.71 5.2e-4 1.2e-3 2.3e-3
LSO Std 15.52 2.8e-4 1.7e-3 1.2e-3 89.17

Median 23.03 5.3e-4 5.1e-4 9.3e-16

Mean 13.99 4.9e-4 1.6e-3 1.4e-3
MVO Std 12.53 2.8e-4 2.1e-3 8.1e-4 78.75

Median 11.28 5.1e-4 8.1e-4 7.1e-16
TABLE II: Convergence test results include mean, standard deviation (Std)
and median of the computation time (Time), sum of penetration depth of all
the robot links (Pen), complimentarity gap at the final pose (Comp Gap),
balance residual at the final pose (Bal Res), and success rate.

to gmin = −10−3 m. The solver terminates with success if the
L1 norm of penetrations of all links is smaller than 1 mm,
the complementary gap is smaller than 10−2 N⋅m, and the
balance residual is smaller than 0.01.

We start the robot first from a close initial position
(Figure 1) and then a faraway initial position (Figure 3).
The results show that our method can generate contact with
“unusual” parts of the geometry. The gripper supports the
object using the side of the finger, the end of the finger, the
palm, and even the back of the finger. The humanoid cradles
the sphere between its torso and hands. Moreover, multiple
contacts can happen on the same robot link, which distin-
guishes our method from prior works on grasp planning,
e.g. [13], where precision grasps are planned with designated
contact points. The test results are summarized in Table I.

Next, we examine the convergence of SIPCC under dif-
ferent initial conditions and oracle choices (Figure 4). The
gripper is required to grasp a sphere. We initialize the
gripper from different positions (0.06–0.12 m, 0.02 m/step)
and orientations ([0,2π), π

12
/step) around a circle. MVO and

LSO oracles are compared, and for LSO r is chosen so that
Br(y∗M) contains 2,000 points. We observe that MVO’s per-
formance decreases rapidly when the initial distance between
the gripper and the object increases, while LSO is much
more robust. Moreover, the success rate of the left half circle
is lower than the right half circle, which is caused by the
fact that the single-finger side of the gripper is underneath
the object when θ ∈ (90○,270○). Besides, the success rate
of the upper half circle is lower than the lower half circle,
and this is because when the initial index points allow the
inner optimization to find a feasible solution, the algorithm
is likely to find a solution. Otherwise, more burden is put on
the oracle to choose index points to guide the gripper to a
feasible configuration. Detailed test results are summarized

(a) MVO (b) LSO

θ (○)

⋅

⋅⋅

↓g

d (cm)

Fig. 4: Convergence results of MVO and LSO oracles, for sphere grasping.
Green is success and yellow is fail. The angular axis represents the CCW
rotation angle of the gripper in the vertical plane, with gravity pointing
downwards. The radial axis represents the distance in cm between the CoM
of the sphere and the palm plane of the gripper. Red dots indicate the number
of fingers on each side. [Best viewed in color.]

in Table II.
VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel computational model
to address the problem that contact is an infinite phenomena
involving continuous regions of interaction. We cast the prob-
lem a SIPCC, and solve it through dynamically determining a
finite number of constraints that are most relevant to solving
the problem and solving a series of problems whose solutions
converge toward one that contains a true optimum of the
original SIPCC.

Future work should study the convergence of SIPCC
algorithms to establish theoretical conditions by which a
merit function and an oracle enable convergence toward
critical points of the original continuous SIPCC. Our current
investigations suggest that an oracle that chooses an index
point that leads to steepest descent of a merit function is a
sound choice, but evaluating this condition for each point is
computationally expensive. Approximation techniques might
lead to oracles that are both theoretically sound and general-
izable to other problem settings. It would also be interesting
to study methods to handle uncertainty in the problem
parameters, such as friction or external forces. For friction,
the required friction coefficient could be incorporated to
the objective function so that the grasp is likely to obey
the true friction. For uncertain external disturbances, the
worst-case disturbance could be included as a separate index
variable. Furthermore, we would like to improve running
times, e.g., by using faster solvers rather than off-the-shelf
NLP solvers. Accelerating the method is necessary for it to
be used in online behavior, and scale toward larger problems
like trajectory optimization or multi-object manipulation.
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